
30 The Delphi Magazine Issue 33

Creating A File Packing List
by Paul Warren

Back in Issue 23 I wrote about
TEventList, fully intending to

be back with more tips for develop-
ing component suites. Alas, time
slipped by without any new ideas
and I finally decided to release the
components as freeware so I could
move on to other projects.

And just when I thought every-
thing was done, BOOM, the email
poured in. ‘I tried to compile your
components and...’ ‘When I tried to
compile your components...’ ‘After
trying to compile I get error mes-
sage...’ I guess you get the picture.

Suffice it to say I learned another
difference between component
suites and single components: they
are more difficult to package and
release. The problem was I forgot
to include two files I had squirreled
away in lesser used directories.
Before you issue me my program-
mer’s dunce cap let me say in my
defence that I did try the package
on another computer. Unfortu-
nately there were old versions of
the files present on the path so I
didn’t get a compile error during
testing.

As the redness in my face sub-
sided I promised myself I would
find a way to prevent this from ever

Accept a pascal source file name from the user

Find the file on a path list

Add the file name to an Outline at the appropriate level

Add the file name to an exclude list to prevent circular references

Obtain the uses clause from the file

Parse the first unit, not in the exclude list, from the uses clause

Repeat until all units have been visited

➤ Table 1: File packing list requirements

happening again. What I really
needed was a utility to create a
packing list for any future product
releases.

Creating A Packing List
To create a packing list for a com-
ponent suite a utility would need to
extract the uses clause of a given
source file, parse out each unit in
turn, write the units to some data
structure and repeat this process
until all units have been found. See
Table 1 for a requirements list. If
you think this sounds like ‘walking’
a directory tree then you are right.

There are a couple of other
requirements as well. Such a utility
would need to exclude the Borland
supplied units and other third
party units if desired. It should also
be able to supply useful output,
printed or otherwise. Finally, it

should only report found units
once. The prototype interface is
shown in Figure 1.

The Recursive Engine
Central to the utility is the recur-
sive method

BuildList(FName: string;
Level: integer)

When called with a unit filename
and Level of 1, Buildlist con-
structs an Outline of unit depend-
encies. BuildList is shown in
Listing 1.

As you can see BuildList first
locates the unit with FindUnit and
then writes the unit filename to
Outline1 and sets Outline1.
Items[Idx] to Level. It then obtains
the uses clause from GetUses-
Clause. The next step is to parse
the first unit from the uses clause
leaving any other units in the vari-
able Remainder. If any of these steps
fail, for example if there is no uses
clause, we have an empty string
and the procedure will end at the
line if NextString is not empty.

If NextString is not blank the pro-
cedure calls itself with NextString
as FName and Inc(Level) as Level.
When the end of each branch is
reached the procedure exits, dec-
rements the level and parses the
next unit from Remainder at the pre-
vious level. In this way every unit
in the tree is visited.

Obtaining The Uses Clause
By far the most difficult routine is
the GetUsesClause function.

➤ Figure 1

May 1998 The Delphi Magazine 31

{ BuildList - recursive routine to “walk” the units tree }
procedure TCVCSMain.BuildList(FName: string; var Level: integer);
var
NextFile, Remaining: string;
Idx: integer;

begin
FindUnit(FName); { find the file on the path }
Idx := Outline1.Add(Outline1.SelectedItem, FName); { add node for file }
Outline1.Items[Idx].Level := Level;
{ add file to exclude list to avoid infinite
recursion from circular unit references }

ExcludeList.Add(FName);
Remaining := GetUsesClause(FName); { get the uses clause from FName }
NextFile := Parse(Remaining); { parse the units clause }
while NextFile <> '' do begin
{ if NextFile is not empty... }
Inc(Level); { Inc tree level }
BuildList(NextFile, Level); { recurse with first dependant file }
NextFile := Parse(Remaining); { find next dependant file }
Dec(Level); { Dec tree level }

end;
end;

➤ Listing 1

Originally I tried paging the source
file into a buffer and using my
REGEXP16.DLL search engine to find
the expression uses. Then a series
of Move operations left a string
containing the uses clause.

The problem with this is that
REGEXP16.DLL is completely
unaware of Pascal syntax so it finds
uses anywhere. If uses is found in a
comment ahead of the true uses
clause I got garbage. The returned
string also contains CR/LF pairs
and whitespace that have to be
removed.

While I did get the function to
work this way it was unreliable and
even took out the operating system
occasionally.

The solution for making GetUses-
Clause work was presented by
Marco Cantù in Issue 23. In his arti-
cle on converting Pascal source to
HTML he showed how to use the
TParser class. TParser is syntax
aware (more or less). With just a
little work TParser can cleanly
extract the uses clause from any
source file. Using TParser has the
added bonus of eliminating CR/LFs
and whitespace and makes it possi-
ble to extract the uses clause from
both the interface and implementa-
tion sections. Listing 2 shows the
complete GetUsesClause function.
As it’s quite complex I’ll go through
it in some detail.

{ GetUsesClause - routine to extract uses clause from unit }
function TCVCSMain.GetUsesClause(FName: string): string;
var
AStream: TFileStream;
Parser: TParser;
BeginCopy,
FoundUses,
IsComment: boolean;
S, OutStr: string;

begin
{ initiallize variables }
Result := '';
BeginCopy := false;
FoundUses := false;
IsComment := false;
try
{ open FileStream(FName) }
AStream := TFileStream.Create(FName, fmOpenRead);
Parser := TParser.Create(AStream); {create unit parser}
try
with Parser do
while Token <> toEOF do begin
S := TokenString;
case Token of
toSymbol :
begin
if (TokenString = 'implementation') and not
IsComment then
FoundUses := true;

if (TokenString = 'uses') and not IsComment
then begin
BeginCopy := true;
S := '';

end;

end;
';' :
begin
if FoundUses then
Exit;

if BeginCopy then begin
AppendStr(Result, ',');
BeginCopy := false;

end;
end;

'{' :
begin
S := '';
IsComment := true;

end;
'}' :
begin
S := '';
IsComment := false;

end;
end;
if BeginCopy and not IsComment then
AppendStr(Result, S);

NextToken;
end;

finally
Parser.Free;
AStream.Free;

end;
except
{ on file open error return empty string }
on EFOpenError do Result := '';

end;
end;

After setting some control vari-
ables, GetUsesClause attempts to
create a TFileStream inside a
try...except block. If TFileStream.
Create fails the function returns an
empty string, allowing the recur-
sive BuildList to exit gracefully
and continue processing (don’t
forget to turn off break on excep-
tion if running under the IDE, other-
wise the program stops every time
a file is not found).

If TFileStream.Create is success-
ful we create an instance of TParser
with the TFileStream as a parame-
ter. Inside a

while Token <> toEOF do ...

loop we repeatedly call NextToken
and manipulate the control vari-
ables BeginCopy, FoundUses and

IsComment according to the value of
Token. Note that when we find the
first semi-colon after the toSymbol
implementationwe exit. This makes
it unnecessary to process the
entire file. We can get away with
this because there can’t be any-
thing but compiler directives or
comments between implementa-
tion and uses.

There is only one small problem.
TParser doesn’t like single quotes.
For my own purposes this doesn’t
matter. I’m happy to replace the
few occurrences of single quotes
with two quotes, especially since
TParser kindly reports the offend-
ing line number and the last unit
processed is the unit TParser failed
to read. If you don’t like this behav-
ior you will need to modify TParser
or, as Marco Cantù suggested,

➤ Listing 2

32 The Delphi Magazine Issue 33

write a better implementation from
scratch.

Parsing The Uses Clause
After extracting the uses clause
from a file we need to parse it into
its constituent units. Listing 3
shows the Parse function. It takes a
comma delimited string and sepa-
rates the first item, returning the
parsed string with the remainder
of the original delimited string.

The function does two other
things as well. First, a call to
IsValidIdent checks that the
parsed string is a valid unit name
and appends the .pas extension if it
is. Second, the entire parsing code
is inside a repeat...until loop that
checks the result against an
exclude list. This is where we can
eliminate units that belong to the
RTL or third parties. Parse will
return an empty string if any of the
tests fail, again so BuildList can
continue processing.

Searching For The Units
If a unit is not in the current direc-
tory then we have to search for it.
Here I decided to use a path string
the same way the IDE does. The
main reason for using a path is to
take advantage of the built-in File-
Search function which takes a path
as the second parameter.

As you can see from Listing 4 the
FindUnit procedure searches the
user defined path and changes

{ Parse - routine to parse the uses clause }
function TCVCSMain.Parse(var ParseStr: string): string;
var Len: integer;
begin
Result := '';
if Length(ParseStr) > 0 then begin
{ if there is something to parse... }
repeat
if Pos(',', ParseStr) <> 0 then begin
{ if there is a comma copy up to it }
Len := Pos(',', ParseStr);
Result := System.Copy(ParseStr, 1, Len-1);

end else begin
{ else copy all remaining string }
Len := Length(ParseStr);
Result := System.Copy(ParseStr, 1, Len);

end;
System.Delete(ParseStr, 1, Len); { delete what we copied }
{ if we have a valid unit name... }
if IsValidIdent(Result) then
Result := Result+'.pas' { add .pas extension }

else
Result := ''; { else return empty string }

{ ...until there is a unit NOT in the exclude list }
until (ExcludeList.IndexOf(Result) < 0);

end;
end;

➤ Listing 3

procedure TCVCSMain.FindUnit(var FName: string);
var
FN, TempStr: string;

begin
FN := FName; { set FN equal to FName }
{ perform the search }
TempStr := FileSearch(FN, Edit1.Text);
{ if successful change FName }
if TempStr <> '' then FName := ExpandFileName(TempStr);

end;

➤ Listing 4

FName to the fully qualified file name
if FileSearch is successful. If unsuc-
cessful FName is unchanged. This
way any file with a full path was
found, any file without a path has
not been found: useful information
for the packing list.

The Exclude List
The exclude list serves two pur-
poses. As already mentioned, it

allows the user to exclude units
which are not of interest.
Secondly, and more importantly,
the exclude list prevents the
infinite recursion that would
surely occur sooner or later from a
circular unit reference.

Remember, the compiler will
generate a circular unit reference
error if one unit references
another which in turn references
itself. That is unless the circular
reference is in the implementation
section. Since GetUsesClause com-
bines both clauses, a circular
reference would be a disaster.

By adding each processed unit
in turn to the exclude list the Parse
function will never return the same
unit twice. Not only does this elimi-
nate the problem of circular
references but it solves the design
problem of only listing a given unit
once. You can see the utility in
action in Figure 2.

Output
While the utility provides a nice
outline view of unit dependencies,
to be truly useful some other form
of output is needed. In keeping

➤ Figure 2

May 1998 The Delphi Magazine 33

with the spirit of the web I decided
to provide HTML output. This way I
can easily provide packing lists on
my web page or use my browser to
print the formatted list. Figure 3
shows the ouput for part of my cal-
endar component suite. Note the
missing file hgDate.pas shows up
clearly. Oh how I wish I had created
this utility before...

Listing 5 is the OutputHtml
procedure. After writing a file
header we simply iterate through
the Outline1.Items list and write
the unit names to a list. The level of
the Outline1.Items controls the

{ OutputHtml - routine to write ouptu in Html format }
procedure TCVCSMain.OutputHtml(FName: string);
var
F: TextFile;
i, j, CurLev: integer;

begin
CurLev := 0;
AssignFile(F, FName);
Rewrite(F);
{ write Html header }
writeln(F, '<HTML>');
writeln(F, '<HEAD><TITLE>Packing List</TITLE>');
writeln(F, '</HEAD>');
writeln(F, '<BODY BGCOLOR="#FFFFFF" TEXT="#000000" ‘+
‘LINK="#0000FF" VLINK="#00009B" ALINK="#DA0000">');

writeln(F, '<H1>'+Format('Packing List for %s',
[ChangeFileExt(FileListBox1.Items[
FileListBox1.ItemIndex], '.zip')])+'</H1>');

writeln(F, '<HR>');
try
{ iterate through the outline }
for i := 0 to Outline1.Lines.Count-1 do begin
{ if level goes up... }
if Outline1.Items[i+1].Level > CurLev then begin
write(F, ''); { increase indent }

Inc(CurLev); { increase CurLev }
end;
{ if level goes down... }
if Outline1.Items[i+1].Level < CurLev then
{ for CurLev down to the new level }
for j := CurLev downto Outline1.Items[i+1].Level+1
do begin
write(F, ''); { close list level }
Dec(CurLev); { decrease CurLev }

end;
write(F, #13#10);
{ write out the actual text }
write(F, ''+Outline1.Items[i+1].Text);

end;
for j := CurLev downto 0 do
write(F, ''); { close all list levels }

{ Html footer }
write(F, '<HR>'#13#10'Generated by CVCS from');
writeln(F, ' HomeGrown Software, by Paul Warren.');
writeln(F, '</BODY></HTML>');

finally
CloseFile(F);

end;
end;

indentation of the list. As the level
increases the code adds a tag
and increments CurLev. Since the
level can only increase by 1 this is
sufficient.

The level can decrease by any
amount however, hence the for
CurLev downto ...Level statement.
We have to add one tag for
each step down. After the whole
list has been output we add a
tag for each level down to 0, com-
pleting nested lists. All that is left is
to write out a footer.

Conclusion
Whether you are releasing a simple
freeware component or a full

➤ Listing 5

➤ Figure 3

commercial component suite,
your hard work will be for nought
and your reputation will suffer if
your package isn’t complete. One
way to protect your investment is
to generate a packing list prior to
packaging and distribution.

While there are any number of
improvements you could make, I
think this utility should help you
avoid the embarrassment I suf-
fered with my botched release of
Calendar Suite v1.0. My only regret
is not having developed this utility
first.

A final word: this project will
compile under Delphi 1, just turn
off stack checking and increase the
stack size.

Paul Warren runs HomeGrown
Software Development in Lang-
ley, British Columbia, Canada and
can be contacted by email at
hg_soft@haven.uniserve.com

	Creating A Packing List
	The Recursive Engine
	Obtaining The Uses Clause
	Parsing The Uses Clause
	Searching For The Units
	The Exclude List
	Output
	Conclusion

